Abstract
Positron emission tomography is the most sophisticated functional imaging technique to-date. Due to it's unique detection mechanism and image analysis physics, the sensitivity and resolution of PET images are superior to that of conventional nuclear medicine images.
Keywords:
positron emission tomography, surgery
References
1
Warburg O. The metabolism of tumors. London: Constable Press, 1930.
2
Juweid ME, Cheson BD. Positron emission tomography and assessment of cancer therapy. N Engl J Med 2006; 354: 496- 507. doi:10.1056/NEJMra050276
3
Gulec SA. Positron emission tomography: A surgeon’s perspective. J Surg Oncol 2007; 95: 443–446. doi:10.1002/ jso.20667
4
Eubank WB, Mankoff D, Bhattacharya M, et al. Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. Am J Roentgenol 2004; 183: 479–486.
5
Isasi CR, Moadel RM, Blaufox MD. A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 2005; 90:105. doi:10.1007/s10549-004-3291-7
6
van der Hoeven JJ, Hoekstra OS, Comans EF, et al. Determinants of diagnostic performance of [F-18] fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 2002; 236:619–624. doi:10.1097/00000658-200211000-00012
7
Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: Impact on surgical decision making. Clin Nucl Med 2003; 28:961–965. doi:10.1097/01.rlu.0000099805.36471.aa
8
Holder WD, White RL Jr., Zuger JH, et al. Effectiveness of PET for the detection of melanoma metastases. Ann Surg 1998; 227: 764–771. doi:10.1097/00000658-199805000-00017
9
Fuster D, Chiang S, Johnson G, et al. Is 18F-FDG-PET More accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med 2004; 45:1323–1327.
10
Fong Y, Saldinger PF, Akhurst T, et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 1999; 178: 282–287. doi:10.1016/S0002-9610(99)00187-7
11
Arulampalam TH, Francis DL, Visvikis D, et al. FDG-PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol 2004; 30:286–291. doi:10.1016/j.ejso.2003.10.023
12
Bipat S, vanLeeuwen MS, Comans EF, et al. Colorectal Liver Metastases: CT, MR Imaging, and PET for Diagnosis-Meta Analysis. Radiology 2005; 237:123–131. doi:10.1148/radiol.2371042060
13
Bienert M, McCook B, Carr BI, et al. 90Y Microsphere treatment of unresectable liver metastases: Changes in 18F-FDG uptake and tumor size on PET/CT. Eur J Nucl Med Mol Imaging 2005; 32:778–787. doi:10.1007/s00259-004-1752-1
14
Veit P, Antoch G, Stergar H, et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 2006; 16:80–87. doi:10.1007/s00330-005-2767-0
15
Schonberger J, Ruschoff J, Grimm D, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002; 12:747–754.
16
Wang W, Larson SM, Fazzari M et al. Prognostic value of [18F] fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85:1107– 1113. doi:10.1210/jc.85.3.1107